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A numerically and experimentally validated analytical model to describe the electrostatic properties of dielectrics with fractal irregularities is developed based on recently
proposed fractional-dimensional electromagnetic models. Fractality can be induced into regular integer-dimensional shapes using defined mathematical methods. The
fractional dimension of the structures is given by Hausdorff's formula. We induced fractality at different levels in geometries including 3D cube/cuboid (for experiments
and simulations) and 2D square/rectangle (for simulations). Full-wave simulations using COMSOL and experiments were employed to verify our analytical models.

Effect of Fractal Plate Distance o0 Cantor Plates: Linear Plots
—_— Cx1/d% a = 0.6309, &, = 3.8

Cantor Plates geometry: divide the region between the electrode plates into e oar e — 38
alternating parallel layers of dielectric and air, with the thickness of each dielectric e oo« — 38
layer set to the3 length of the components of a Cantor set of certain removal factors

(3,4, 5, 6, and 7) at the 4" iteration.
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A Removal factor = 1/5
‘+ — Cx1/d% a = 0.7917, & = 3.8
* + Removal factor = 1/6
- Cx1/d% a =0.8181, &, = 3.8
* Removal factor = 1/7
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Fractal Dimension: Fractal dimension (a) of plate distance (d) for a removal factor | s s —— - )
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Fig 1: Discrete d values within 4t Cantor Fig 2: Simulation results for Cantor Plates

Results: the simulation results and practical experiments satisfied the theoretical ~ S€titération cube —varying plate distance in of different removal factors
scaling a fractal manner

le—13 Linear Plots: C « d2¢ EffeCt Of FraCtaI Pla.te Area

T SR o= B 5B (A) Cantor Bars geometry: create Cantor sets along two orthogonal directions to
Cxd™, a = 07067, & = 3.8 form fractal plate area (of a square outer shape) and extrude it along the third
perpendicular direction to create non-fractal plate distance.

B Removal factor = 1/4
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Fractal Dimension: The plate area is d? x d9 , where d is the side of the square, and
a Is the Hausdorff dimension for a certain removal factor. The fractal dimension of
the plate area (d??) is 2a.
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1 = Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension
L | | | | | | for certain removal factor (a) and the distance between plates (d): € « d%¢
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Fig 3: Varying plate area for Cantor Fig 4. Simulation results for Cantor Bars of
Bars different removal factors
le—12 Sierpinski Carpet Results (B) Sierpinski Carpet geometry: creating Sierpinski carpet as the plate area and
Y Cudhan 18926, = 38 extruding it, thus creating a fractal plate area and non-fractal plate distance.
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Fractal Dimension: The fractal dimension for Sierpinski Carpet is a theoretical value
determined by Hausdorff’'s formula.
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Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension
(a,) and the distance between plates (d): C «< d*H
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Results: for both cases, simulation results satisfied the theoretical scaling.
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Fig 5: Varying plate area for Sierpinski Fig 6: Simulation results for Sierpinski Carpet
Carpet

1a—17 Menger Sponge: Linear Plots

Effect of Fractal Plate Distance and Area

(A) Menger Sponge Geometry: the dielectric had the geometry of Menger sponges
with the highest iteration being 3. The plate electrodes also have a fractal area.

B Simulation Results
— Cuxd®3 a, =2.727
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Fractal dimension: theoretically determined by Hausdorff's formula (ay, ). The overall 0.6
shape of the dielectric is cubic, the plate area has a fractal dimension of (2/3)*ay -
and the plate distance has a fractal dimension of a, /3.
0.2
Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension 0.0-
(ay) and the distance between plates (d): C «< d“H . 0 5 o 15 20 25 30
Figf?: Varying parameters Fig 8: Simulation results for Menger Sponge
or Menger Sponge et TS, st B
le—13 antor pust: Linear FIotsS
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(B) Cantor Dust Geometry: create Cantor sets along all 3 orthogonal directions with | Ribiog i it
an overall cubic structure. Thus, both plate area and plate distance are fractal. 150 {| - Cugham 09565 ,
A Removal factor = 1/5
1254 Cocd"‘,oz=0.79i716
Fractal dimension: overall structure is cubic, the plate area is d?® while the plate . L Clamanosa -
. . . . . . S 1.007 * Removal factor = 1/7
distance is d? Hence the overall dimension (d%¢ / d* = d? ) is a, where a is the : -
Hausdorff dimension for a certain removal factor. § 073
0.50 *
Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension . 3—*
(a) and side of cube (d): C « d“ .
s
Results: for both cases, the simulation results satisfied the theoretical scaling. Fig 9: Varying parameters for Cantor Fig 10: Simulation restlts for Cantor Dust

Dust
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