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A numerically and experimentally validated analytical model to describe the electrostatic properties of dielectrics with fractal irregularities is developed based on recently

proposed fractional-dimensional electromagnetic models. Fractality can be induced into regular integer-dimensional shapes using defined mathematical methods. The

fractional dimension of the structures is given by Hausdorff’s formula. We induced fractality at different levels in geometries including 3D cube/cuboid (for experiments

and simulations) and 2D square/rectangle (for simulations). Full-wave simulations using COMSOL and experiments were employed to verify our analytical models.

Effect of Fractal Plate Distance

Cantor Plates geometry: divide the region between the electrode plates into

alternating parallel layers of dielectric and air, with the thickness of each dielectric

layer set to the3 length of the components of a Cantor set of certain removal factors

(3, 4, 5, 6, and 7) at the 4th iteration.

Fractal Dimension: Fractal dimension (α) of plate distance (d) for a removal factor

(r) using Hausdorff’s formula: 𝛼 = −
log(2)

log
1− Τ1 𝑟

2

Theoretical scaling to be followed by simulation results of capacitance (C) for fractal

dimension (α) and plate distance (d): 𝐶 ∝
1

𝑑𝛼

Results: the simulation results and practical experiments satisfied the theoretical

scaling.

Fig 1: Discrete d values within 4th Cantor 

set iteration cube – varying plate distance in 

a fractal manner

Fig 2: Simulation results for Cantor Plates 

of different removal factors

Fig 3: Varying plate area for Cantor 

Bars

Fig 5: Varying plate area for Sierpinski

Carpet

Fig 4: Simulation results for Cantor Bars of 

different removal factors

Fig 6: Simulation results for Sierpinski Carpet

Effect of Fractal Plate Distance and Area

(A) Menger Sponge Geometry: the dielectric had the geometry of Menger sponges

with the highest iteration being 3. The plate electrodes also have a fractal area.

Fractal dimension: theoretically determined by Hausdorff’s formula (αH ). The overall

shape of the dielectric is cubic, the plate area has a fractal dimension of (2/3)*αH

and the plate distance has a fractal dimension of αH /3.

Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension

(αH) and the distance between plates (d): 𝐶 ∝ 𝑑𝛼𝐻

(B) Cantor Dust Geometry: create Cantor sets along all 3 orthogonal directions with

an overall cubic structure. Thus, both plate area and plate distance are fractal.

Fractal dimension: overall structure is cubic, the plate area is d2α while the plate

distance is dα. Hence the overall dimension (d2α / dα = dα ) is α, where α is the

Hausdorff dimension for a certain removal factor.

Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension

(α) and side of cube (d): 𝐶 ∝ 𝑑𝛼

Results: for both cases, the simulation results satisfied the theoretical scaling.

Fig 7: Varying parameters 

for Menger Sponge
Fig 8: Simulation results for Menger Sponge

Fig 9: Varying parameters for Cantor 

Dust
Fig 10: Simulation results for Cantor Dust

Effect of Fractal Plate Area

(A) Cantor Bars geometry: create Cantor sets along two orthogonal directions to

form fractal plate area (of a square outer shape) and extrude it along the third

perpendicular direction to create non-fractal plate distance.

Fractal Dimension: The plate area is dα x dα , where d is the side of the square, and

α is the Hausdorff dimension for a certain removal factor. The fractal dimension of

the plate area (d2α ) is 2α.

Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension

for certain removal factor (α) and the distance between plates (d): 𝐶 ∝ 𝑑2𝛼

(B) Sierpinski Carpet geometry: creating Sierpinski carpet as the plate area and

extruding it, thus creating a fractal plate area and non-fractal plate distance.

Fractal Dimension: The fractal dimension for Sierpinski Carpet is a theoretical value

determined by Hausdorff’s formula.

Theoretical scaling to be followed by simulation results (C) for Hausdorff dimension

(αH) and the distance between plates (d): 𝐶 ∝ 𝑑𝛼𝐻

Results: for both cases, simulation results satisfied the theoretical scaling.
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