MEMS Module

MEMS Module

Software for Microelectromechanical Systems (MEMS) Simulations


Image made using the COMSOL Multiphysics® software and is provided courtesy of COMSOL.

A pressure sensor gives the pressure based on capacitance change, which is related to the deformation of the structure. Deformation depends on the ambient pressure and temperature, on the materials used, and on any initial stresses in the material.

MEMS Module


Simulation of Microelectromechanical Systems

The design and modeling of microelectromechanical systems (MEMS) is a unique engineering discipline. At small length scales, the design of resonators, gyroscopes, accelerometers, and actuators must consider the effects of several physical phenomena in their operation. Consequently, COMSOL Multiphysics is ideally suited for MEMS applications. To this end, the MEMS Module provides predefined user interfaces with associated modeling tools, referred to as physics interfaces, for a variety of coupled physics, including electromagnetic-structure, thermal-structure, or fluid-structure interactions. You can include a variety of damping phenomena in your model: thin-film gas damping, anisotropic loss-factors for solid and piezo materials, anchor damping, and thermoelastic damping. For elastic vibrations and waves, perfectly matched layers (PMLs) provide state-of-the-art absorption of outgoing elastic energy.

Best-in-class piezoelectric and piezoresistive modeling tools allow for simulations where composite piezo-elastic-dielectric materials can be combined in any imaginable configuration. The MEMS Module includes analyses in the stationary and transient domains, as well as fully-coupled eigenfrequency, parametric, quasi-static, and frequency response analyses. You can easily perform lumped parameter extraction of capacitance, impedance, and admittance, and connect to external electrical circuits via SPICE netlists. Built upon the core capabilities of COMSOL Multiphysics®, the MEMS Module can be used to address virtually any phenomena related to mechanics at the microscale.


Read More