Rotordynamics Module

Rotordynamics Module

Software for Modeling the Dynamics of Rotating Machinery


Image made using the COMSOL Multiphysics® software and is provided courtesy of COMSOL.

The pressure distribution in the lubricant of the bearings (rainbow color plot), von Mises stresses (blue color plot), and displacement of the bearings (Orbit plot) resulting from a rotordynamics analysis.

Rotordynamics Module


Predictive Rotordynamics Simulations

The study of rotordynamics is important in application areas that involve rotating machinery, such as the automotive and aerospace industries, power generation, and the design of electrical products and household appliances. The physical behavior of rotating machines is greatly influenced by vibrations, which are exacerbated by the rotation and structure of the machines themselves. Perfectly symmetrical rotor assemblies exhibit different natural frequencies as a function of rotational speed, while imperfections and unbalances can excite these frequencies in intricate ways. When designing machinery with rotating parts, you need an efficient way to consider these behaviors and optimize operation and performance.

You can use the Rotordynamics Module, which is an expansion to the Structural Mechanics Module, to analyze the effects of lateral and torsional vibrations of rotating machinery in order to study rotor vibrations and contain their levels within acceptable design limits. Among the different design parameters you can evaluate with this module are critical speeds, whirl, natural frequencies, stability thresholds, and the stationary and transient responses of a rotor due to mass unbalances. You can also see how rotational behavior may lead to stresses in the rotor itself, as well as additional loads on and vibration transmissions to other parts of the rotating machine’s assembly.

With the Rotordynamics Module, you can take into account the effects of various stationary and moving rotor components, including disks, bearings, and foundations. You can also easily postprocess your results directly within the software environment, presenting them as Campbell diagrams, modal orbits, harmonic orbits, waterfall plots, and whirl plots.


Read More